Интерференция радиоволн - определение. Что такое Интерференция радиоволн
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Интерференция радиоволн - определение

ЯВЛЕНИЕ СЛОЖЕНИЯ АМПЛИТУД ДВУХ И БОЛЕЕ КОГЕРЕНТНЫХ ВОЛН
Интерференция (физика)
  • Интерференция волн от двух точечных когерентных источников сферических волн. Синим и красным/желтым обозначены минимумы и максимумы
  • это интерферометрическая решетка]], состоящая из множества меньших [[телескоп]]ов, как и многие большие [[радиотелескоп]]ы, работающие в режиме интерферометра.
  • Картина интерференции большого количества круговых когерентных волн, в зависимости от длины волны и расстояния между источниками
Найдено результатов: 25
ИНТЕРФЕРЕНЦИЯ РАДИОВОЛН      
может происходить за счет взаимодействия прямой волны с отраженной от поверхности Земли или от ионосферы; волн, прошедших разные пути в тропосфере, или волн, отраженных разными участками ионосферы, и др.
Интерференция радиоволн      

играет существенную роль в процессах излучения и распространения радиоволн. При излучении радиоволн сложными антенными устройствами, состоящими из нескольких излучателей (вибраторов или щелей, см. Антенна), радиоволны от отдельных излучателей интерферируют между собой (см. Интерференция волн). Амплитуда результирующей волны в разных направлениях оказывается различной, что и определяет диаграмму направленности антенны. Например, в результате И. р. от двух вибраторов B1 и B2, разнесённых на расстояние, равное нескольким длинам волн и питаемых токами одинаковой амплитуды, фазы и частоты, получается многолепестковая диаграмма направленности (рис. 1). В максимумах диаграммы фазы волн от отдельных излучателей совпадают, а амплитуды электрического и магнитного полей E1, H1 складываются: E = 2E1, Н = 2H1. Поток энергии в направлении максимумов пропорционален произведению 2E1․2H1, т. е. в 4 раза больше, чем для излучения каждого вибратора в отсутствии другого. Зато в направлении минимумов два вибратора вместе вообще не излучают, так как в этих направлениях суммарное поле равно нулю: Е = 0 и Н = 0. Варьируя число вибраторов и расстояние между ними, можно создавать антенны с заданной диаграммой направленности. См. Излучение и приём радиоволн.

При распространении радиоволн (См. Распространение радиоволн) И. р. возникает прежде всего из-за их отражения от поверхности Земли, в результате чего в каждую точку над Землёй приходят 2 волны - пришедшая прямо и отражённая, интерферирующие друг с другом (рис. 2). В связи с этим на диаграмме направленности приёмной антенны появляются дополнительные лепестки, число которых тем больше, чем больше высота антенны над Землёй и чем меньше длина волны. При распространении средних и коротких радиоволн интерференция возникает в том случае, если в одну и ту же точку пространства попадают волны, идущие непосредственно от передатчика и отражённые от ионосферы (См. Ионосфера), или волны, отражённые разными участками ионосферы. Для ультракоротких радиоволн интерференция нередко получается за счёт прихода в данную точку волн, прошедших различные пути в тропосфере (См. Тропосфера), либо за счёт их отражения от местных предметов.

В радиотехнике во многих случаях возможно прямое измерение разности фаз интерферирующих колебаний, а так как в интерференционной картине распределение разностей фаз обусловлено взаимным расположением излучателя и приёмника, то их измерение может служить методом определения местоположения приёмника радиоволн относительно излучателя. На этом основан ряд фазовых радионавигационных систем.

В отличие от оптики, в радиотехнике возможно непосредственное измерение частоты излучаемых волн. Поэтому, исследуя интерференционную структуру поля двух передатчиков, можно измерять расстояние между ними. Наоборот, зная это расстояние, можно с высокой степенью точности определять скорость распространения радиоволн в данных условиях. Существует ряд интерференционных методов измерения расстояний и скорости радиоволн (см. Радиодальномер).

Лит.: Мигулин В. В., Интерференция радиоволн, "Успехи физических наук", 1947, т. 33, в. 3.

Рис. 1. Многолепестковая диаграмма направленности антенны - результат интерференции радиоволн, излучаемых её отдельными элементами.

Рис 2. Интерференция радиоволн при их распространении вдоль поверхности Земли.

Интерференция волн         
Интерференция волн (, от inter — между + -ferens — несущий, переносящий) — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.
ИНТЕРФЕРЕНЦИЯ ВОЛН         
явление, наблюдающееся при одновременном распространении в пространстве нескольких волн и состоящее в стационарном (или медленно изменяющемся) пространственном распределении амплитуды и фазы результирующей волны. Интерференция волн возможна, если разность фаз волн постоянна во времени, т. е. волны когерентны (см. Когерентность). Интерференция волн возникает для волн любой природы и частоты.
РНК-интерференция         
  • год=2006}}</ref>
  • Слева: Полноразмерный белок [[Argonaute]] из [[архебактерии]] ''[[Pyrococcus furiosus]]''. Справа: PIWI-домен белка [[Argonaute]] в комплексе с двуцепочечной РНК
  • год=2006}}</ref>
  • В исследованиях РНК-интерференции широко используют плодовых мух ''[[Drosophila melanogaster]]''
  • Вторичная структура стебелек-петля пре-микроРНК из ''[[Brassica oleracea]]''
  • год=2000}}</ref>
  • год=2006 }}</ref>
  • тип=journal}}</ref>
  • Механизм синтеза малых интерферирующих РНК
RNAi; РНК — интерференция; Интерференция РНК; Пост-транскрипционный сайленсинг генов; Посттранскрипционный сайленсинг генов
РНК-интерференция () — процесс подавления экспрессии гена на стадии транскрипции, трансляции, деаденилирования или деградации мРНК при помощи малых молекул РНК.
Солнечная засветка         
Солнечная интерференция; Солнечная засветка антенн земных станций
Засветка антенн земных станций Солнцем (, иногда ошибочно — Поэтому, при пословном переводе получают распространённое «солнечная интерференция») — зашумление радиосигнала, принимаемого со спутника, в результате смешения полезного радиосигнала с излучением от Солнца, при нахождении Солнца вблизи оси «антенна — спутник связи».
Земного магнетизма, ионосферы и распространения радиоволн институт         
Научно-исследовательский институт земного магнетизма; ИЗМИРАН; Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова; Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова РАН; Земного магнетизма, ионосферы и распространения радиоволн институт; ИЗМИР АН СССР

АН СССР (ИЗМИРАН), научно-исследовательское учреждение, занимающееся изучением явлений земного магнетизма, физических свойств ионосферы и магнитосферы Земли и распространения радиоволн в них, исследованием влияния активности Солнца на геофизические (электромагнитные) процессы. ИЗМИРАН находится в Научном центре АН СССР в Красной Пахре (под Москвой). Организован в 1939 на базе Бюро Генеральной магнитной съёмки и Павловской магнитной обсерватории, входившей в состав Главной геофизической обсерватории. Организатором и первым директором ИЗМИРАН был Н. В. Пушков.

В институт входит Ленинградское отделение, занимающееся исследованием постоянного магнитного поля Земли и магнитной картографией, а также Калининградская и Архангельская комплексные магнитоионосферные обсерватории. Институт располагает немагнитной шхуной "Заря", на которой проводятся исследования магнитного поля на акватории Мирового океана, вертикальное зондирование ионосферы и исследование космических лучей. Институт принимает участие в исследованиях на антарктических станциях. В институте созданы магнитометры, установленные на искусственных спутниках Земли, космических ракетах и на станциях "Луна" и "Венера".

Результаты научных работ публикуются в "Трудах ИЗМИРАН" (с 1936), в месячном обзоре "Космические данные" (с 1938), содержащем первичные материалы наблюдений, в "Месячном прогнозе распространения радиоволн" (с 1947), в журнале "Геомагнетизм и аэрономия" (с 1961). Лаборатория краткосрочных прогнозов ионосферы ежедневно делает сообщения по радио о состоянии ионосферы. Ленинградское отделение периодически составляет карты магнитного поля на поверхности Земли.

Лит.: Ляхов Б. М., Из истории ИЗМИРАНа, "Земля и Вселенная", 1969, 1969.

Б. М. Ляхов.

Институт земного магнетизма, ионосферы и распространения радиоволн имени Н. В. Пушкова РАН         
Научно-исследовательский институт земного магнетизма; ИЗМИРАН; Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова; Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова РАН; Земного магнетизма, ионосферы и распространения радиоволн институт; ИЗМИР АН СССР
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова Российской академии наук (ИЗМИРАН) — научный институт РАН, головное отделение которого расположено в Троицке, Москва.
Интерференция (лингвистика)         
Интерференция (Лингвистическая интерференция) (, от inter — между + -ferens — несущий, переносящий) — обозначает в языкознании последствие влияния одного языка на другой, т.е.
Интерференция         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
I Интерфере́нция (от лат. inter - взаимно, между собой и ferio - ударяю, поражаю)

1) в биологии - влияние перекреста (Кроссинговера) гомологичных хромосом (См. Хромосомы) в одном участке на появление новых перекрестов в близлежащих к нему участках. Чаще этот вид И. препятствует возникновению нового перекреста в соседнем участке, поэтому в опытах процент двойных кроссоверных особей, как правило, оказывается ниже теоретически ожидаемого. Особенно сильно И. подавляет двойной кроссинговер при малых расстояниях между Генами. 2) В медицине И. вирусов - подавление действия одного вируса другим при смешанной инфекции. При этом первый вирус именуется интерферирующим, а второй - претендующим.

II Интерфере́нция

волн, сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны. И. характерна для всяких волн независимо от их природы: для волн на поверхности жидкости, упругих (например, звуковых) волн, электромагнитных (например, радиоволн или световых) волн.

Если в пространстве распространяются две волны, то в каждой точке результирующее колебание представляет собой геометрическую сумму колебаний, соответствующих каждой из складывающихся волн. Этот так называемый принцип суперпозиции соблюдается обычно с большой точностью и нарушается только при распространении волн в какой-либо среде, если амплитуда (интенсивность) волн очень велика (см. Нелинейная оптика, Нелинейная акустика). И. волн возможна, если они когерентны (см. Когерентность).

Простейший случай И. - сложение двух волн одинаковой частоты при совпадении направления колебаний в складывающихся волнах. В этом случае, если колебания происходят по синусоидальному (гармоническому) закону, амплитуда результирующей волны в какой-либо точке пространства

где A1 и A2 - амплитуды складывающихся волн, а φ - разность фаз между ними в рассматриваемой точке. Если волны когерентны, то разность фаз φ остаётся неизменной в данной точке, но может изменяться от точки к точке и в пространстве получается некоторое распределение амплитуд результирующей волны с чередующимися максимумами и минимумами. Если амплитуды складывающихся волн одинаковы: A1 = A2, то максимальная амплитуда равна удвоенной амплитуде каждой волны, а минимальная - равна нулю. Геометрические места равной разности фаз, в частности соответствующей максимумам или минимумам, представляют собой поверхности, зависящие от свойств и расположения источников, излучающих складывающиеся волны. В случае двух точечных источников, излучающих сферические волны, эти поверхности - гиперболоиды вращения.

Другой важный случай И. - сложение двух плоских волн, распространяющихся в противоположных направлениях (например, прямой и отражённой). В этом случае получаются Стоячие волны.

Среднее за период значение потока энергии в волне пропорционально квадрату амплитуды. Поэтому, как следует из выражения для результирующей амплитуды, при И. происходит перераспределение потока энергии волны в пространстве. Характерное для И. распределение амплитуд с чередующимися максимумами и минимумами остаётся неподвижным в пространстве (или перемещается столь медленно, что за время, необходимое для наблюдений, максимумы и минимумы не успевают сместиться на величину, сравнимую с расстоянием между ними) и его можно наблюдать только в случае, если волны когерентны. Если волны не когерентны, то разность фаз φ быстро и беспорядочно изменяется, принимая все возможные значения, так что среднее значение cos φ = 0. В этом случае среднее значение амплитуды результирующей волны оказывается одинаковым в различных точках, максимумы и минимумы размываются и интерференционная картина исчезает. Средний квадрат результирующей амплитуды при этом равен сумме средних квадратов амплитуд складывающихся волн, т. е. при сложении волн происходит сложение потоков энергии или интенсивностей.

Описанные выше основные черты явления И. в одинаковой степени относятся как к упругим, так и электромагнитным волнам. Однако в то время как в случае звуковых волн и радиоволн легко обеспечить их когерентность (например, питая разные громкоговорители или антенны одним и тем же током), когерентные световые пучки можно получить только от одного и того же источника света, применяя специальные методы. Другое существенное различие между способами осуществления И. звуковых волн и радиоволн, с одной стороны, и световых волн - с другой, связано с размерами излучателей. Размеры излучателей звуковых волн и радиоволн почти всегда сравнимы с длиной излучаемой волны, тогда как в случае световых волн обычно приходится иметь дело с источниками света, размеры которых велики по сравнению с длиной волны. Поэтому при И. световых волн существенную роль играет вопрос о протяжённости источников. В силу этих особенностей И. света можно наблюдать только в специальных условиях (подробнее см. в ст. Интерференция света).

И. волн находит важное применение, как в научных исследованиях, так и в технике. Поскольку между длиной волны, разностью хода интерферирующих лучей и расположением максимумов и минимумов существует вполне определённая связь, можно, зная разности хода интерферирующих волн, по расположению максимумов и минимумов определить длину волны, и наоборот, зная длину волны, по расположению максимумов и минимумов определять разность хода лучей, т. е. измерять расстояния. К числу приборов, в которых используется И. волн, относятся: оптические Интерферометры, радиоинтерферометры, интерференционные Радиодальномеры и т. д. См. также Интерференция радиоволн.

Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 3, М., 1970, гл. 3; Горелик Г. С., Колебания и волны, 2 изд., М.-Л., 1959; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3).

Википедия

Интерференция волн

Интерференция волн (лат. interferens, от inter — между + -ferens — несущий, переносящий) — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии, потому что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности.

Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Что такое ИНТЕРФЕРЕНЦИЯ РАДИОВОЛН - определение